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1. INTRODUCTION

In [1] we discussed variational principles in nonlinear viscoelasticity. The principal result
there, was the development of a functional K(A) which produced as Euler equations the
(transformed) field equations of a general theory of nonlinear viscoelasticity. Unfortu­
nately, the functional actually given in [1] will not yield the correct Euler equations unless
the stress and dissipation functions 'iji j and :?} are held constant when the total strain his­
tories are varied. This limitation invalidates theorem 2 in [1] and makes the collection of
results given there considerably less useful than originally reported.

In this note, we again address the variational problem and offer modifications of our
earlier work which overcomes the objectionable features mentioned above.

2. A VARIATIONAL THEOREM

Using the notation, and assumed initial- and boundary conditions given in [1], we
consider the behavior of a nonlinearly viscoelastic solid for which the following field
equations hold at particle x and time t:

[(iii(um,j + 8m)],i + pFm = pUnt

YiJ = t(ui,j + Uj, i + um , iUm,j)
ro

(iii = 'ijii[1 t(s)]
s=o

ro

where 1t(S) == 1(X, t - s) is the history of the strain y(x, t), and 'ijii[.] is the stress response
functional. .=0

An alternate form of (2.1) can be obtained by taking the Laplace transform of each
equation. Under appropriate (homogeneous) initial conditions, the transformed equations
assume the form
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'iii' = 1[ii . . + ii . . + _1 (ii . * ii .)]
J ~ ',J J, I 2nj m, I mol

jjii = Fii[y(p), pl.
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Here iiii is the Laplace transform of (Jii, etc. in the sense that the Laplace transformation
on the time variable of a function!(x, t) is given by

](x,p) = r!(x, t)ept dt.

°
Then the inverse transformation of ](x,p) back to the real time is defined by (see, e.g.
Churchill[3])

1 c+ ioo
!(x, t) = -2.f ](x,p)ePI dp.

1rJ c- ioo

Furthermore, in [3] the Laplace transformation of the product of two functions It(t) and
!2(1) is given by

or equivalently

I
= -2.(Jt(p)*]ip))

1rJ

wherein the symbol * denotes the convolution operation. In (2.2) the dependence of iiii,
Yii etc. on x is understood.

In the following we shall make use of the methodology described in [I] to construct the
variational statement of the problem described by (2.2).

We shall henceforth assume that the Laplace transformation of the stress functional
00

§'ii[yt(s)] of (2.1) is defined by an ordinary function of the type Fii(a.(p), p). This assertion,
of course, may severely limit the forms of §' that can be used in our variational principle.
We cite an example of such a functional subsequently. (See equation 3.2.)

Theorem 1

Let uO, yO and aO, all defined for (x,p)elJll x (- 00, (0), satisfy the field equations (2.2)
with homogeneous boundary conditions Further, let "'[Y(x, p), p] denote a functional
whose Gateaux differential is such that 0"'['] == Fii[y(x, p), p] .. ?ij' where? ij is arbitrary.
Then the functional K(A) given by

- f 2 - 1 ..
K(A) = !. /pp um *um - 2pFm *um - 21rj (ii

ll *Um,j), i *um

- 2ii~~ * um + 2t/J[y(p), p] - 2y ij * iiii} dv (2.3)

assumes a stationary value at AO= {iiD, yO, aO}.
Proof Let A= {ii, 1, a} denote an arbitrary element in the domain of K. Then using

(2.4) or (2.5) of [l], we compute

_ 1 - "'- -
oK(A) = lim - [K(A + IXA) - K(A)].

..-.0 IX

Now comes a great deal of algebra. To illustrate a typical manipulation, consider the
variation of the third term in (2.3). We have
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1 1 f .. _.. ~ ~.. }d
lim .... -4. ([O") + tXO") * (um,j + tXUm,)] * (um, i + tXum,J - (0")'* Um,) *Um, i V
«.... 0 tX TtJ v

. 1 1 f{ "'-Ij - - '-ij "'- - -ij - "') O( 2)} d=lim-
4
---: tX(u *Um,j*Um,i+U *Um,j*Um,i+U *Um,j*Um,i + tX V

«.... 0 tX TtJ v

= 4~ f {(Um,i *Um,) * aij + 2(O'i
j *Um,) *Um,;} dv

nJ v

= _1_ f {(Um . *Um ).) * O'ij - 2(aij *Um ).) i *Um} dv.4nj v .. , , ,

Performing similar calculations with the remaining terms in (2.3) and collecting the
results, we get

bK(A) = Iv {[pp2Um - 2~j (O'i
j * Um,j),i - O'~i - pFm] *um

- (Yij - -1 [Ui,j + uj,; + 2:j (um,; *Um,)]) * aij - (O'i
j

- Fij[y(p)]) * Yi j}dv

= (grad K(A), A).

Clearly grad K(A) = 0 at A = AO, which proves the theorem.

3. AN EXAMPLE

Obviously, theorem 1 holds only if functionals of the type t/J[.] in (2.3) exist. We offer
an example in which such a functional does indeed exist. Consider a class of viscoelastic
materials which, for one-dimensional deformations, the stress is given by

I
t oy It rt oy oy

u(t) = G1(t - T);- (T) dT + G2(t - T, t - 1]h- (T) -;- (1]) dT d1]° uT °.° uT U1]

I
tIt It oy oy oy

+ G3(t - T, t - 1], t - eh- (T) -;- (1]) ~)< mdT d1] de° ° ° uT U1] u,>

or equivalently
U(t)=G1*y+G2 *y*y+G 3 *y*y*y (3.1b)

where G1, G2 and G3 are material kernels and integral representations such as these are
common in nonlinear viscoelasticity; see, for example [2].

Now taking the Laplace transform of (3.1), and assuming, for simplicity, homogeneous
initial conditions, we obtain

O'(p) = F[y(p), p] = G1pY(p) + G2p2Y(p)Y(p) + G3p3y(p)Y(p)Y(p) (3.2)

wherein again the dependences of 0' and y on x are understood. Then, following the proce­
dure described in [1], we compute the integral

1

J ==I (F[Ay(p), p], Y(p» dA

°
= J{tG1Py *Y + IG2p2(y)2 *Y + tG3p3(y)3 * ji} dv

v

= J'P[Y(p), p] dv. (3.3)
v
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Now for the functional ljt[.] in (2.3) to possess the desired properties, we assume that
the variable y(x, p) be represented as a product of a function of x and one of p; i.e.

y(x, p) == Y(x)f(p).

Using (3.4) in (3.3) and considering variations in Yu(x) only, we can verify that

{jJ = f {G1Py + Gzpz('ji)z + G3p3(y)3} * ydv
v

or

bJ = f F['ji(p), p] * yep) dv =f bljt[y(p)] dv.
v v

(3.4)

(3.5a)

(3.5b)

4. REMARKS

It should be noted that for the case where the constitutive equation (3.1) is a linear
relation, separability property of (3.4) is not required. In our example, it is the material
nonlinearity (as described in (3.1)) which compels us to impose this condition.

We also remark that equation (3.9d) in [1] for the internal dissipation be deleted from the
system of field equations and the remaining equations be written in the transformed form
such as given in (2.2) of the present note. Then the order of the operator matrix appearing
in (4.1) reduces to three.

The terms appearing in equations (5.1-5.3) of [1] should be replaced by the correspond­
ing transformed terms of (2.4) of this note and the quantity Yij * ljij

[.] should be replaced
by the functional ljt[.] described herein. In equations (5.6-5.7) introduce p in front of the
free energy functional <I> and replace (j and M by D(u, (j) and bD(·) respectively; where D
is defined so that (5.8) is bu D = (j = pby <1>:;'0 ['leu); y(u) I (ay/au) tit].
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